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OutlineOutline

λ Introduction to X-ray spectra of disks

λ MCG-6-30-15 : physics of a spinning BH

λ Are disk signatures generic amongst AGN?

λ X-ray binary sources (in brief).

λ The future and Constellation-X
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I : X-ray signatures of disksI : X-ray signatures of disks
in black hole systemsin black hole systems

λ Accretion flow produces
hard X-ray continuum
(thermal Comptonization)

λ Irradiated optically-thick
matter will
– Compton backscatter X-rays

(Lightman & White 1988;
Guilbert & Rees 1988)

– Cause fluorescence
(strongest line is iron Kα)
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Also see
•George & Fabian (1991)
•Matt et al. (1991)
•Reynolds (1996)
•Nayakshin & Kallman (2000)

David
Ballantyne
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Relativistic effects imprint characteristic profileRelativistic effects imprint characteristic profile
on sharp spectral featureson sharp spectral features

First calculations of
line profiles by
Fabian et al. (1989);
Laor (1991)
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II : The AGN MCG-6-30-15II : The AGN MCG-6-30-15
The classic relativistic disk lineThe classic relativistic disk line

λ X-ray reflection first
found by EXOSAT &
Ginga (Nandra et al. 1989;
Pound et al. 1990)

λ First relativistic broad iron
line found by ASCA
– Consistent with a disk

extending to the ISCO of a
non-rotating BH

– Some of the most direct
evidence for a supermassive
black hole in any source

– A ROBUST FEATURE!
(Fabian et al. 1995) Tanaka et al. (1995)
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The The ““Deep MinimumDeep Minimum””

Iwasawa et al. 
(1996)
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Power-law fit

June-2000 XMM-NewtonJune-2000 XMM-Newton
observation of MCG-6-30-15observation of MCG-6-30-15

DEEP
MINIMUM
STATE!
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Wilms, Reynolds et al. (2001)
Reynolds et al., in prep.

Disk emissivity…
ε ∝ r−β
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Inconsistent with Inconsistent with ““standardstandard”” disk models disk models
of of NovikovNovikov, Page & Thorne (PT-disk), Page & Thorne (PT-disk)

Mismatch ⇒ Δχ2≈90
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WhatWhat’’s going on?s going on?

λ X-ray emission/reflection does not track total dissipation…
– Suppose X-ray emission is zero beyond r=rout

– With PT-disk, data require rout<6GM/c2

– Problems with X-ray/Bolometric ratio…
– Alternative : vertically displaced source (Martocchia & Matt 2002;

Fabian & Vaughan 2003)

λ PT-disk is incorrect… could be torqued at inner edge
– Gammie 1999; Agol & Krolik 2000; Merloni & Fabian 2003
– Torque due to magnetic connection between disk and plunging-

region or rotating black hole…
– Possibility for extracting spin-energy of black hole
– See poster by Garofalo & CSR
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NASA/Dana Berry
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Torqued Torqued accretion disksaccretion disks

CSR et al. (2003, in prep.)
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Comparison with the 320ks XMMComparison with the 320ks XMM
observation of MCG-6-30-15observation of MCG-6-30-15

λ Deep look at MCG-6-30-15
– Caught source in higher-flux

state (not Deep Minimum)
– Very high S/N iron line
– Disk emission more

distributed, but very broad
red wing still present

λ Lack of flux-correlated line
variability…
– Spectrum decomposes into

constant “reflection-
dominated” spectrum, and
variable power-law.

Fabian et al. (2002)
Fabian & Vaughan (2003)
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MCG-6-30-15 (ASCA)
Shih et al. (2001)

Also… see RXTE analyzes of
Chiang, CSR et al. (2000), CSR (2000)
Lee et al. (2000)



16Minuitti et al.
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A dusty warm absorber orA dusty warm absorber or
soft X-ray lines from a relativistic disksoft X-ray lines from a relativistic disk

λ Arguments against pure
warm absorber model;
– Simple oxygen edges seem

are absent?
– Resonance absorption lines

of oxygen are weak

λ Relativistic line model;
– Relativistic emission lines

of OVIII, NVII and CVI…
– … plus some ionized

absorption

λ But… WA is dusty!  Can
this affect the spectral
arguments? Branduardi-Raymont et al. (2001);

Sako et al. (2002)
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Lee et al. (2003)

Still subject of debateStill subject of debate……
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Remember that underlying soft continuum mayRemember that underlying soft continuum may
be rather bumpy (from reflection continuum)!be rather bumpy (from reflection continuum)!
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II : Are disk signatures generic?II : Are disk signatures generic?

λ Results from ASCA
– Broad lines generic in

Seyfert galaxies
– Became weaker in high-L

AGN.
– Also weak in low-L AGN
– Very promising and “clean”

probe of accretion disks and
black hole physics in most
generic AGN!

λ Situation become more
complex with XMM
observations Nandra et al. (1997)
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The iron-clad casesThe iron-clad cases

MCG-6-30-15
Wilms et al. (2001)
Fabian et al. (2002)
Reynolds et al. (2003)

NGC3516
Turner et al. (2002)
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Reeves et al. (2001) Pounds et al. (2001)

Mrk509
(high-L Seyfert)

Mrk205
(low-L quasar)

Direct detection of ionized disksDirect detection of ionized disks
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XMM-Newton
(Schurch et al. 2002)

ASCA
Wang et al. (1999,2002)

NGC 4151NGC 4151
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λ Comparison of ASCA and
XMM data…
– Broad line substantially

weaker during XMM
observation

– Very strong line of Wang et
al. probably artifact of poor
continuum subtraction

– Need to be very careful
about modelling absorption!
(Schurch et al. 2002)

Koeckert & Reynolds 
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NGC 4593NGC 4593
λ Somewhat similar AGN to

MCG-6-30-15
– Radio-quiet AGN
– Similar BH mass and

luminosity
– Rapidly variable in X-rays
– X-ray warm absorber

λ July 2002 campaign…
ESO, STIS, XMM, RXTE

λ Preliminary XMM results:
– No obvious disk signatures
– Hard (not impossible!) to

smear/ionize features away

Brenneman & CSR
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Brenneman & CSR
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The search for disksThe search for disks……

λ Disk features should be present in X-ray spectra of
active sources!

λ Careful analysis is required:
– Modeling the continuum properly is crucial
– … but you cheat yourself if you include arbitrary

(unphysical) continuum components!

λ Also have to account for:
– Strong ionization of disk surface
– Extremely strong relativistic smearing (e.g. MCG-6)
– Dramatic variability of spectral features (Are XMM

observations too short to see “well-behaved” features?)
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IV: Disk signatures inIV: Disk signatures in
Galactic Black Hole BinariesGalactic Black Hole Binaries
λ Studied by Ginga &

RXTE (see review by
CSR & Nowak 2003)

λ Disk signatures hard to
study in GBHCs
– Disk ionization generic
– Complex continuum
– Bright; saturated early CCD

spectrometers

λ Chandra & XMM
– revealed broad iron lines in

Cyg-X1 & XTEJ1650-500

λ See talk by Jon Miller…

Red: XTEJ1650-500 (XMM-Newton)
Blue : Cygnus X-1 (Chandra)
Miller et al. (2001,2002)
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V : Constellation-X studiesV : Constellation-X studies
of BH disk signaturesof BH disk signatures

λ High resolution spectroscopy across 0.5-10keV
band crucial for disentangling complex systems

λ Variability of disk signatures open up new
windows on physics of accretion disks and black
hole themselves
– Variability on dynamical timescale ⇒ turbulence

– Variability on light-crossing time ⇒ reverberation ⇒
space-time geometry
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Armitage &
Reynolds (2003)

Probe of disk
turbulence
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λ Reverberation of X-ray flares
(CSR et al. 1999)

λ Sensitive probe of space-time
geometry
– Get inward and outward

propagating X-ray echoes

– inward propagating echo is
purely a relativistic effect ⇒
measure spin parameter

λ Just within reach of Con-X
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ConclusionsConclusions
λ X-ray spectroscopy can provide powerful probe of

relativistic accretion disks
– Some iron clad and well-studied cases (both AGN and GBHCs)
– Broad iron lines not as generic as previously thought?   Jury still

out…
– Ionization, extreme smearing, variability may all play role in

reducing prominence of features.

λ Capabilities of Constellation-X crucial for pushing
significantly beyond Chandra/XMM era
– High resolution spectroscopy needed to disentangle complex

spectra (esp. characterize absorption)
– Variability of disk signatures used to probe turbulence and space-

time geometry.
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Non-Non-axisymmetric axisymmetric structure may havestructure may have
been seen alreadybeen seen already……

Chandra-HETG data on NGC3516 
(Turner et al. 2002)

Simulation results for  inclination 
of 20 degs (summed over 2 full orbits)

A prime science target for Astro-E2



34Reynolds et al. (1999)



35
Constellation-X simulations

Young &
Reynolds
(2000)


